

ISTITUTO DI ISTRUZIONE SUPERIORE ALDO MORO Liceo Scientifico - Liceo Linguistico - Istituto Tecnico

Via Gallo Pecca n. 4/6 - 10086 Rivarolo Canavese Tel 0124 454511 - Cod. Fiscale 85502120018 e-mail: TOIS00400V@istruzione.it - sito: www.istitutomoro.edu.it

Programma sugli obiettivi minimi e compiti per allievi con sospensione di giudizio.

Classe 4BS

MATEMATICA

UNITA'	CONOSCENZE	COMPETENZE	ABILITA'
DIDATTICA	CONOBCENZE	COMETENEE	TABILITY
Coniche	Le coniche	Operare con circonferenze, parabole, ellissi, e iperboli di equazione generica nel piano dal punto di vista della geometria analitica Tradurre dal linguaggio naturale al linguaggio algebrico e viceversa Individuare le strategie appropriate per la soluzione di problemi	Determinare le equazioni delle coniche fondamentali
Funzioni, equazioni e disequazioni esponenziali	L'insieme dei numeri reali e le potenze ad esponente reale La funzione esponenziale Equazioni esponenziali Disequazioni esponenziali	Operare con i concetti e con i metodi delle funzioni elementari dell'analisi e dei modelli matematici Individuare le principali proprietà di una funzione Individuare le strategie appropriate per la soluzione di problemi	Applicare le proprietà delle potenze a esponente reale Rappresentare il grafico di funzioni esponenziali Trasformare geometricamente il grafico di una funzione Risolvere equazioni e disequazioni esponenziali
Funzioni, equazioni e disequazioni	La funzione logaritmica	Operare con i concetti e con i metodi delle	Applicare le proprietà dei logaritmi
logaritmiche	Proprietà dei logaritmi	funzioni elementari	Rappresentare il grafico

	Equazioni logaritmiche ed equazioni esponenziali risolvibili mediante logaritmi Disequazioni logaritmiche e disequazioni esponenziali risolvibili mediante logaritmi	dell'analisi e dei modelli matematici Individuare le principali proprietà di una funzione Risolvere equazioni e disequazioni logaritmiche	di funzioni logaritmiche Trasformare geometricamente il grafico di una funzione Risolvere equazioni e disequazioni logaritmiche
Funzioni goniometriche	Definizione di radiante Definizione di seno, coseno e tangente in un triangolo rettangolo Valori notevoli Definizione di seno, coseno e tangente sulla circonferenza goniometrica. Le funzioni seno, coseno, tangente e le funzioni inverse (arcoseno, arco coseno, arcotangente) Le funzioni goniometriche di angoli particolari Le funzioni goniometriche e le trasformazioni geometriche	Padroneggiare le funzioni goniometriche e calcolarne il valore Operare con i concetti e con i metodi delle funzioni elementari dell'analisi e dei modelli matematici Sviluppare le capacità di rappresentazione grafica.	Saper misurare un angolo in gradi sessagesimali e radianti. Conoscere il significato di seno, coseno e tangente di un angolo sul riferimento polare Rappresentare graficamente le funzioni seno, coseno, tangente e le funzioni trigonometriche inverse. Calcolare le funzioni goniometriche di angoli particolari Determinare le caratteristiche delle funzioni sinusoidali: ampiezza, periodo, pulsazione, sfasamento Rappresentare graficamente funzioni tipo $y = Asen(\omega x + \varphi)$
Formule, equazioni e disequazioni goniometriche	Gli angoli associati Le formule di addizione e sottrazione Le formule di duplicazione Le formule di bisezione Le equazioni goniometriche elementari Le equazioni lineari in seno e coseno Le equazioni	Operare con i concetti e con i metodi delle funzioni elementari dell'analisi e del calcolo algebrico	Calcolare le funzioni goniometriche di angoli associati Applicare le formule goniometriche Verificare identità Risolvere equazioni goniometriche Risolvere disequazioni goniometriche

	•		1
	omogenee in seno e		
	coseno		
	Le disequazioni		
	goniometriche		
Trigonometria	I teoremi sui triangoli	Operare con gli	Risolvere triangoli
	rettangoli	strumenti di	rettangoli
	L'area di un triangolo	trigonometria per la	Calcolare l'area di un
	Il teorema della corda	risoluzione di problemi	triangolo
	Il teorema dei seni	e la costruzione di	Conoscere e applicare i
	Il teorema del coseno	modelli	teoremi della corda, dei
	La risoluzione dei	Individuare le strategie	seni e del coseno
	triangoli	appropriate per la	Risolvere un triangolo
	Applicazione dei	soluzione di problemi	qualunque
	teoremi alla geometria		Risolvere problemi
	Applicazione dei		mediante i teoremi di
	teoremi a contesti		trigonometria
	della realtà		

RIVEDERE ATTENTAMENTE I NUMEROSI ESERCIZI E PROBLEMI RISOLTI DURANTE L'ANNO E INTEGRARE CON GLI ESERCIZI PROPOSTI DAL TESTO

EQUAZIONI ESPONENZIALI E LOGARITMICHE

$$\sqrt{2^x} \cdot \sqrt[3]{\frac{1}{2^{2-x}}} = \sqrt{2} \cdot \sqrt[3]{2}$$

$$\sqrt{3^{2x-1}} \cdot 9^{\frac{1}{x}} = \left(\frac{1}{3}\right)^{-x}$$
 $2^{2x+2} - 33 \cdot 2^x = -8$

$$2^{2x+2} - 33 \cdot 2^x = -8$$

$$\frac{1}{2^{x}+1} + \frac{1}{2^{2x}-1} = -\frac{2}{3} \qquad log_{\frac{1}{2}}(3-x) = -3 \qquad log_{2}(5+\sqrt{x}) = 3$$

$$\log_{\frac{1}{2}}(3-x) = -3$$

$$log_2(5+\sqrt{x})=3$$

$$log(5-x) + log x = log(x-2) + log 2$$

$$log_2\sqrt{x+1} - log_2\sqrt{x-1} = 1$$

$$log_2^2 x + 3log_2 \sqrt{x} = 1$$
 $\frac{1}{ln \, x} + \frac{1}{2ln \, x - 1} = 2$ $log_2(-x) - x - 4 = 0$

$$\frac{1}{\ln x} + \frac{1}{2\ln x - 1} = 2$$

$$log_2(-x) - x - 4 = 0$$

DISEQUAZIONI ESPONENZIALI E LOGARITMICHE

$$\left(\frac{5}{4}\right)^{\frac{2}{x}} \le \frac{4}{5}$$

$$2^{x+3} \ge \frac{16}{2^{x-2}}$$

$$2^{x+3} \ge \frac{16}{2^{x-2}}$$
 $3^{2x} + 4 \cdot 3^x + 3 > 0$

$$3^{x} + \left(\frac{1}{3}\right)^{x} \le \frac{10}{3}$$

$$\frac{1}{2^{2x}-1} + \frac{1}{2^{x}-1} > \frac{4}{3} \qquad log_2(x^2 - 2x) \ge 1$$

$$log_2(x^2 - 2x) \ge 1$$

$$log_{\frac{1}{2}}(5-\sqrt{x}) \ge -2$$
 $log_2x + log_2(x-2) < 1$ $log_2x - log_2(x-1) \le 2$

$$log_2x + log_2(x-2) < 1$$

$$log_2x - log_2(x-1) \le 2$$

$$log_2\sqrt{x+2} - log_2\sqrt{x} \le 1$$

$$log_2\sqrt{x+2} - log_2\sqrt{x} \le 1$$
 $log^2x - 6log\sqrt{x} > -2$ $\frac{1}{log_2x} + \frac{1}{2log_2x-1} < 2$

$$2^x \cdot 3^{x-1} \le 4^x$$

$$2^{x+1} - 2^x \le 2 \cdot 3^x - 3^{x-1}$$

EQUAZIONI E DISEQUAZIONI TRIGONOMETRICHE

$$\cos\left(\frac{\pi}{2} - x\right) = \cos\left(x - \frac{\pi}{3}\right)$$

$$\cos\left(\frac{\pi}{2}-x\right) = \cos\left(x-\frac{\pi}{3}\right)$$
 $\sin x = \sin\left(2x-\frac{\pi}{2}\right)$ $\tan\left(x+\frac{\pi}{3}\right) = \tan\left(2x-\frac{\pi}{4}\right)$

$$\tan\left(x+\frac{\pi}{3}\right) = \tan\left(2x-\frac{\pi}{4}\right)$$

$$\sin\left(\frac{\pi}{2} - \frac{x}{2}\right) = \cos\left(\frac{\pi}{5} - x\right) \qquad 3\sin^2 x - 7\sin x + 2 = 0 \qquad 2\tan^2 x - \tan x - 1 = 0$$

$$3\sin^2 x - 7\sin x + 2 = 0$$

$$2tan^2x - tan x - 1 = 0$$

$$\sin^2 x - \cos x - 1 = 0$$

$$2\cos^2 x - \sin\left(\frac{\pi}{2} + x\right) - 1 = 0$$

$$\sin^2 x - \cos x - 1 = 0$$
 $2\cos^2 x - \sin\left(\frac{\pi}{2} + x\right) - 1 = 0$ $\sin\left(x - \frac{\pi}{6}\right) + \cos\left(x - \frac{\pi}{3}\right) = \frac{3}{2}$

$$3\sin x + \cos 2x = 2$$

$$\sqrt{3}\cos x - \cos 2x = 1$$

$$3\sin x + \cos 2x = 2 \qquad \qquad \sqrt{3}\cos x - \cos 2x = 1 \qquad \qquad \sqrt{3}\sin x + \cos x - 2 = 0$$

$$\sin x - 2\cos x - 2 = 0$$

$$\sin x - 2\cos x - 2 = 0$$

$$\sin^2 x - 3\sqrt{3}\sin x \cos x + 6\cos^2 x = 0$$

$$2sin^2x + \sqrt{3}sin\ xcos\ x + cos^2x = 2 \qquad 2cos^2x + 3sin\ x \ge 3 \qquad 2sin^2x - \sqrt{2}cos\ x \ge 0$$

$$2\cos^2 x + 3\sin x \ge 3$$

$$2\sin^2 x - \sqrt{2}\cos x > 0$$

$$\cos\left(x + \frac{\pi}{3}\right) + \cos\left(x - \frac{\pi}{3}\right) \le -\frac{\sqrt{2}}{2}$$

$$\frac{2\sin x + \sqrt{2}}{2\cos x + 1} \le 0$$

$$\frac{3 - \tan^2 x}{\sin x} > 0$$

$$(1 - 2\cos x)\sin x < 0$$

$$\sin x \ge \cos x + 1$$

$$\sin x + 3\cos x + 1 \le 0$$

GRAFICI E TRASFORMAZIONI

Rappresentare graficamente le seguenti curve indicando le trasformazioni eseguite:

$$y = 1 - \log_2(x+1) \qquad y = -\log_{\frac{1}{2}}(1-x) \qquad y = 2^{x-3} - 1 \qquad y = -3^{-x} - 2$$
$$y = -2\sin\left(2x + \frac{\pi}{3}\right) \qquad y = \cos\left(\frac{1}{2}x - \frac{\pi}{6}\right) + 2 \qquad y = -\tan\left(2x - \frac{\pi}{2}\right)$$

PROBLEMI DI TRIGONOMETRIA

- 1) Si consideri una semicirconferenza di diametro AB e raggio r e il punto C, sul prolungamento di AB dalla parte di B, tale che BC = 3r. Da C condurre la tangente alla semicirconferenza, indicando con T il punto di contatto. Determinare seno, coseno e tangente di $A\hat{C}T$.
- 2) Nel triangolo rettangolo ABC, sia AH l'altezza relativa all'ipotenusa BC. Sapendo che $\cos A\widehat{B}C = \frac{\sqrt{5}}{5}$ e che CH + AH + BH = 7 cm, determinare l'area del triangolo.
- 3) Nel triangolo ABC, rettangolo in A, l'ipotenusa BC misura 6a e il cateto AC misura 4a. Indicato con D il punto di BC tale che CD = 2a, calcolare l'area del triangolo ABD, dopo aver determinato $sin\ A\widehat{B}C$.
- 4) Si consideri una circonferenza di diametro AB = 2r e un trapezio isoscele ABCD in essa inscritto. Determinare la misura degli angoli alla base del trapezio in modo che la sua area sia ¼ dell'area del quadrato costruito su una delle due diagonali del trapezio.
- 5) Nel triangolo ABC, isoscele sulla base AB, siano AB = $2k e \hat{ABC} = x$. Nel semipiano di origine BC non contenente A, si costruisca il triangolo rettangolo isoscele BCD, di ipotenusa BD. Determinare x in modo che l'area del quadrilatero ABCD sia $8k^2$.
- 6) Risolvere i seguenti triangoli noti gli elementi indicati:
 - a = 4, b = 4, c = 5
 - $c = 2\sqrt{3}$, $\alpha = 45^{\circ}$, $\beta = 60^{\circ}$
 - $a = 6, b = 5, \beta = 30^{\circ}$
- 7) In un triangolo acutangolo ABC risulta $A\widehat{B}C = \frac{\pi}{6}$, AB = a e $B\widehat{A}C = x$. Indicata con H la proiezione di C su AB, determinare x in modo che risulti CH + CB + AH = $2\sqrt{2}$ CA.
- 8) In un triangolo ABC, isoscele sulla base AB, i lati obliqui misurano 2k. Si indichi con M il punto medio di AC e siano H e K le sue proiezioni rispettivamente sulle rette CB e AB. Determinare l'ampiezza di $A\hat{C}B$ per cui AH² + MK² = 4k².
- 9) Si consideri un punto P appartenente ad un quadrante AOB di circonferenza di centro O e raggio r. Si indichi poi con x la misura di $A\hat{O}P$. Detta H la proiezione di P su OA, determinare x in modo che sia verificata la relazione $BP^2 + OH^2 = 7/5$ ($PH^2 + OB^2$).

Svolgere anche gli esercizi assegnati all'intera classe