# IIS Moro - Dipartimento di matematica e fisica

Obiettivi minimi per le classi seconde - Fisica

# CONTENUTI SECONDO ANNO

| MODULO                  | OBIETTIVI                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                    |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Conoscenze                                                                                                                                                                                                                                                                                                                                                                                                           | Abilità                                                                                                                                                                                                                                                                            |
| L'EQUILIBRIO<br>TERMICO | <ul> <li>Definizione operativa di temperatura</li> <li>Le principali scale di temperatura</li> <li>Significato di equilibrio termico</li> <li>Interpretazione microscopica della temperatura</li> <li>Dilatazione termica lineare e cubica</li> <li>Equazione fondamentale della calorimetria</li> <li>Calore specifico e capacità termica</li> <li>Propagazione del calore</li> <li>Cambiamenti di stato</li> </ul> | <ul> <li>Trasformare i valori delle temperature da una scala all'altra</li> <li>Applicare le leggi di dilatazione termica</li> <li>Applicare l'equazione fondamentale della calorimetria</li> <li>Applicare la formula relativa al calore latente nei passaggi di stato</li> </ul> |
| LE FORZE E IL<br>MOTO   | <ul> <li>Significato e unità di misura della velocità</li> <li>Legge oraria del moto rettilineo uniforme</li> <li>Significato e unità di misura dell'accelerazione</li> <li>Legge oraria del moto uniformemente accelerato</li> </ul>                                                                                                                                                                                | <ul> <li>Applicare la legge oraria del moto uniforme</li> <li>Trasformare da km/h in m/s e viceversa</li> <li>Applicare le leggi del moto uniformemente accelerato</li> <li>Saper interpretare grafici spazio-tempo</li> </ul>                                                     |

RIVEDERE ATTENTAMENTE I NUMEROSI ESERCIZI E PROBLEMI RISOLTI DURANTE L'ANNO E INTEGRARE CON GLI ESERCIZI ASSEGNATI COME COMPITO PER LE VACANZE

Di seguito sono riportate alcune tipologie di esercizi e problemi.

#### Calore e trasmissione del calore

Esercizio 1: Si hanno 4 kg di acciaio (calore specifico uguale a 502 J/(kg · K)) e 3 kg di zinco. Determina: a) la quantità di calore necessaria per portare l'acciaio da 0 °C a 80 °C;

- b) il calore specifico dello zinco, sapendo che per portare i 3 kg da 18 °C a 93 °C occorrono 88425 J;
- c) la capacità termica delle due masse di acciaio e di zinco.

**Esercizio 2:** Un anello di alluminio ha il diametro interno pari a 2,00cm. Alla stessa temperatura una sferetta di alluminio ha il diametro pari a 1,90cm. Se la sfera viene riscaldata fino a 400°C, riuscirà ancora a passare attraverso l'anello? (Supponi che la -5 temperatura dell'anello non cambi e

il coefficiente di dilatazione lineare sia pari a 2,4 10 °C. Cosa ha provocato la variazione delle dimensioni della sferetta? (R. raggio della sfera a 400°C misura 1,92cm...quindi)

Esercizio 3: Una bistecca di massa 300g viene estratta dal freezer, ad una temperatura di 15°C. Prima di cuocerla bisogna portarla alla temperatura ambiente di 20°C. Quanto calore

4 occorre

fornirle? (Il calore specifico della bistecca è circa 3500J/kg·°C). (R. 3,7·10 J) 4

Esercizio 4: Si fornisce la stessa quantità di calore 3,9·10 J a 5kg di piombo e di rame inizialmente a 23°C. Quale dei due si scalda di più? (calore specifico piombo 130J/kg°C, calore specifico rame 390J/kg°C. (R. tfPb= 83°C, tfCu=43°C)

Esercizio 5: Un pezzo di ferro di massa 500g alla temperatura di 54,5°C, viene immerso in un recipiente contenente 1,1kg di acqua alla temperatura di 20°C. Dopo un certo intervallo di tempo il sistema acqua ferro raggiunge la temperatura di equilibrio di 21,4°C. Calcola il calore specifico del ferro supponendo che non ci siano state dispersioni significative di calore. (R. 390J/kg·K)

**Esercizio 6:** Una massa di ferro pari a 350g cede una quantità di calore pari a 18995J. Se la temperatura iniziale del ferro era di 68°C, quale sarà la temperatura finale del ferro? (calore specifico del ferro 440J/(kgK). (R. -55°C)

Esercizio 7:Che cosa succede mescolando una tazza di caffè bollente (supporre la massa pari a 100g e calore specifico uguale a quello dell'acqua) con un cucchiaio d'argento di massa pari a 100g (calore specifico 233J/(kgK))?Se si utilizza un cucchiaino della stessa massa ma di legno (calore specifico 2512J/(kgK)) cosa cambia? Che temperatura raggiungerà il sistema tazza cucchiaino nei due casi? (R. 95,2°C; 70,0°C)

#### Cambiamenti di stato

#### Esercizio 1

- a) 20 kg di mercurio (calore latente di fusione uguale a 11,7 · 10<sup>3</sup> J/kg) allo stato liquido sono portati alla temperatura di solidificazione (-38,3 °C). Determina la quantità di calore che il mercurio cede, passando totalmente allo stato solido.
- b) Calcola il calore latente di fusione del benzolo, sapendo che quando una quantità di 1,50 kg di tale sostanza alla temperatura di solidificazione (5,5 °C) cede 190,8 · 10<sup>3</sup> J sotto forma di calore, passa allo stato solido.
- c) Qual è la massa di cloroformio (calore latente di fusione 79,5 · 10<sup>3</sup> J/kg) che cede una quantità di calore pari a 71550 J per passare allo stato solido dopo che ha raggiunto la temperatura di solidificazione (-63,5 °C)?

#### Esercizio 2

Il mercurio (calore latente di vaporizzazione uguale a  $302 \cdot 10^3$  J/kg) ha come temperatura di ebollizione 356,95 °C, mentre il ferro (calore latente di vaporizzazione  $6362 \cdot 10^3$  J/kg) quella di 2500 °C. Avendo 300 kg di mercurio e 15 kg di ferro, determina: a) quale dei due quantitativi di metallo richiede la maggior quantità di calore per passare allo stato aeriforme, una volta che hanno raggiunto le rispettive temperature di ebollizione;

- b) quale massa di mercurio richiederebbe la stessa quantità di calore che richiedono i 15 kg di ferro per passare allo stato aeriforme, una volta raggiunta la temperatura di ebollizione;
- c) il calore latente di vaporizzazione di una sostanza non nota, sapendo che 65 kg di essa richiedono 59,8 · 10<sup>6</sup> J di calore per passare allo stato aeriforme, trovandosi alla temperatura di ebollizione.

**Esercizio 3**: Un vassoio di argento a 20°C di 0,500kg viene completamente fuso .La temperatura di fusione dell'argento è 961°C, il calore specifico è di 238J/(kgK), il calore latente di fusione è di 105000J/kg. Quanto calore occorre per fondere completamente il vassoio? (R. 1,65·105J)

Esercizio 4: Un blocco di piombo di 275g è alla temperatura di 295K. Quanto calore bisogna fornire al piombo per farlo fondere completamente sapendo che la temperatura di fusione è di 327°C, mentre il calore specifico è di 128J/(kgK), il calore latente di fusione è di

4

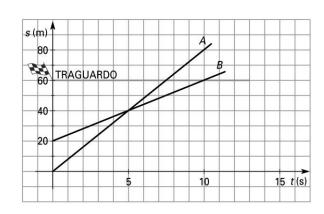
23900J/kg?. (R. 1,73·10 J)

#### Moto rettilineo uniforme

#### Esercizio 1

È data la seguente tabella relativa a grandezze direttamente proporzionali:

| Y   | X  |
|-----|----|
| 25  | 4  |
| 50  | 8  |
|     | 12 |
| 100 |    |


Soddisfa le seguenti richieste: *a*) completa la tabella;

- c) determina la velocità in m/s e in km/h;
- d) scrivi la legge oraria del moto (unità di misura del SI);
- e) rappresenta il grafico nel piano cartesiano spazio-tempo.

## Esercizio 2

Esamina il grafico a fianco, relativo all'ipotetica gara fra due amici che si sfidano sulla stessa pista, e soddisfa le richieste successive. a) Determina la velocità di A e di B sia in m/s sia in km/h.

- b) Quanti metri di vantaggio ha B su A al momento della partenza?
- c) Dopo quanti secondi A sorpassa B?
- d) Scrivi la legge oraria di A e di B.
- e) Quanto tempo impiega A per arrivare al traguardo?
- f) Quanto tempo impiega B per arrivare al traguardo?



## Esercizio 3

Al tempo t=0 un carrello ha già percorso 350m. Se la velocità del carrello è di 14,0m/s ed esso si muove di moto rettilineo uniforme, quanto vale la distanza percorsa dopo 86secondi? (R.1554m)

# Esercizio 4

Una moto, che procede in linea retta con velocità costante di 20 m/s, al tempo t = 0 s ha sorpassato un semaforo e si trova a 500 m da esso.

- Scrivi la legge oraria del moto
- Completa la seguente tabella.

Tempo (s) 0 25 50 100 200

Spazio (m)

#### Moto rettilineo uniformemente accelerato

#### Esercizio 1

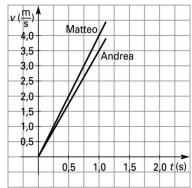
È data la seguente tabella relativa a grandezze legate da una proporzionalità quadratica:

| X  | Y  |
|----|----|
| 0  | 0  |
| 5  | 10 |
| 10 | 40 |
|    | 90 |
| 20 |    |

Soddisfa le seguenti richieste: *a*) completa la tabella;

Y

b) trova il valore della costante K = ... e scrivi la relazione corrispondente Y = ...


Dopodiché, ipotizzando che la prima colonna (X) rappresenti il tempo (t) misurato in secondi (s) e la seconda (Y) lo spazio (s) misurato in metri (m), relativamente a un moto uniformemente accelerato: c) determina l'accelerazione;

- d) scrivi la legge oraria del moto (usando le unità di misura del SI);
- e) traccia il grafico del moto nel piano (s, t).

#### Esercizio 2

Esamina il grafico, riguardante una prova ipotetica nella quale due motociclisti, Andrea e Matteo, sul rettilineo di una pista cercano di verificare quale fra i loro due motori presenta su un certo tragitto, con partenza da fermo, la *ripresa* migliore. (Per semplicità, supponiamo costanti le accelerazioni).

- a) Determina l'accelerazione di Andrea e di Matteo.
- b) Calcola la velocità di Andrea e di Matteo dopo 3 s.
- c) Scrivi la legge oraria del moto di Andrea e di Matteo.
- d) Sapendo che il percorso è lungo 200 m, trova il tempo impiegato dai due motociclisti per raggiungere il traguardo.
- *e)* Rappresenta il grafico (*s*, *t*) del moto del più veloce fra i due. Quando l'intervallo di tempo raddoppia, che cosa accade allo spazio percorso?



#### Esercizio 3

Un bambino, inizialmente fermo, scende lungo uno scivolo con un'accelerazione costante pari a 3,5m/s². Determina quanto spazio percorre in 4s. (R.28m)

#### Esercizio 4

Un ciclista transita per la posizione s0= 100m all'istante t=0 muovendosi con velocità pari a 10m/s. Sempre all'istante t=0 un motociclista, che è fermo nella posizione s0= 0m, si mette in movimento lungo la stesa traiettoria del ciclista e nel medesimo

2.

verso con un'accelerazione costante pari a 0,625m/s

- \* Scrivi le leggi orarie dei moti dei due corpi.
- \* Traccia i grafici cartesiani(s, t) dei moti dei due corpi
- \* Trova la distanza che separa A da B all'istante t=60s (R. 425m)
- \* Individua la posizione e l'istante in cui il motociclista sorpassa il ciclista (R. 500m, 40s)

#### Esercizio 5

Un'auto A si muove con velocità iniziale pari a 12m/s e rallenta uniformemente con decelerazione costante pari a -1,2m/s fino a fermarsi in 10s. Una seconda auto B parte da ferma e accelera con accelerazione costante pari a

0,8m/s Rappresenta la situazione nel grafico velocità-tempo; determina le equazioni orarie e lo spazio percorso dalle due automobili dopo10s. (R.60m; 40m)

#### Esercizio 6

Un ciclista arriva in cima ad una salita alla velocità di 5m/s, poi affronta la discesa con accelerazione costante pari a 2

0,2m/s. Calcola la velocità dopo 30s e la distanza percorsa in tale intervallo di tempo. (R. 11m/s, 240m)

#### Esercizio 7

Un camion che viaggia alla velocità di 36km/h comincia a frenare e si ferma in 10secondi. Supponendo che la velocità 2

diminuisca uniformemente, calcola l'accelerazione e costruisci un grafico velocità-tempo. (R. -1,0m/s)

#### Esercizio 8

Un motociclista passa davanti a un semaforo alla velocità di 90km/h. Un'auto della polizia , inizialmente ferma, la insegue. La polizia raggiunge la moto dopo 2km. Dopo quanto tempo la polizia raggiunge il motociclista? Qual è 2 l'accelerazione dell'auto della polizia? Qual è la velocità dell'auto quando raggiunge la moto? (R. 80,0s; 0,625m/s; 180km/h)

#### Esercizio 9

Un vaso cade da un terrazzo e impiega 2s per arrivare al suolo. Con quale velocità arriva al suolo? Da quale altezza è caduto? (R. 19,6m/s; 19,6m)